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Abstract-A Micro Inertial Measurement Unit (µIMU) which is based on MEMS accelerometers and gyro sensors is developed for real-time recognition of human body motions, specifically falling down motions caused by slippage. A µIMU measures three-dimensional angular rate and three- -dimensional acceleration. With an integrated microcontroller, the overall size of our µIMU is less than 26mm*20mm*20mm. We present our progress on using this µIMU based on Support Vector Machine (SVM) training to recognize falling down motions. The digital sample rate of the micro controller is 200 Hz which ensures rapid reaction to short falling down time and also gives a sufficient database for SVM recognition. Experiments show that our system achieves a falling down recognition rate of 90%. Our goal is to implement this system to a human air-bag system designed to protect hip fractures of the elderly.
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Ⅰ  Introduction

Falls and fall-induced fractures are very common among the elderly.  Of all the fall-induced fractures, hip fractures account for most of the deaths and costs.  After a hip fracture, an elderly person usually loses his/her independence of functional mobility, and hence, has poor quality of life.  The elderly is also more susceptible to experience a second hip fracture [1]. Hip protectors are protective devices made of hard plastic or soft foam and are placed over the greater trochanter of each hip to absorb or shunt away the energy during mechanical impact on the greater trochanter [2]. They are widely demonstrated both biomechanically and clinically to be capable of reducing the incidence of hip fractures.  However, the compliance of the elderly to wear them is very low, due to discomfort, wearing difficulties, problem with urinary incontinence and illness, physical difficulties, and not useful and irrelevant. Our group is proposing to develop a novel hip protector with smaller dimensions and greater comfort according to the body figures of the elderly. Basically, a MEMS motion sensing unit will be used to detect imbalance of the elderly and trigger the inflation of compact air bags worn by the elderly. The system design is small, light-weight and comfortable as the elderly have to wear it everyday.
Owning to the availability of low-cost, small-size MEMS sensors, it is possible to build self-contained inertial sensors with overall system  dimension of less than 1 cubic inch, and at the same time, the sensors unit can track the orientation and locomotion in real time. As an example, our group developed the Micro Input Devices System (MIDS) based on MEMS sensors as a novel multi-functional interface input system, which could potentially replace the mouse, the pen and the keyboard as input devices to the computer [3]. The MIDS is also used to evaluate the performance of PD adaptive control and Impedance control schemes in manipulating a five-fingered robot hand and in manipulating this hand to grasp a ball [4, 5]. A similar but more complex device was developed by X.P. Yun et al. to track rigid body orientation in real time [7] and to serve as a navigation system for small autonomous underwater vehicles.
Our group recently developed a micro Inertial Measurement Unit (µIMU) which measures three dimensional angular rates and three dimensional accelerations. This system is similar to the one developed by X.P. Yun et al. but has a different hardware configuration and uses different software protocols. Ours system is optimized for overall system volume and cost. With an integrated microcontroller, the overall size of the µIMU can be designed less than 26mm*20mm*20mm. The µIMU is an essential part of the novel hip protector, which can collect human motion data and also recognize motion data, e.g., falling motion, if trained appropriately using Support Vector Machine (SVM) algorithm. Experiments show that the recognition rate of the falling-down motion of subjects can be high as 90%. Hence, this intelligent µIMU unit can be eventually implemented onto our novel hip protector design for activation of air-bag.
This paper is organized as follows. In Section 2, a brief idea of our hip protector design will be introduced. We will focus on describing the µIMU design in Section 3, including hardware and software. The SVM training process will be discussed in Section 4. Experiments and data analysis will be described in Section 5, before the conclusion is presented in Section 6. 
II Hip protector system
As mentioned before, hip fractures account for most of the deaths and costs of falls and fall-induced fractures, especially for elderly people. We propose to develop intelligent and personalized wearable air-bags to reduce the force of impact during a fall for elderly. Recent advances in manufacturing technologies have made it possible to safely compress air in small, light weight, and low-cost pressurized cylinders, thereby making a personalized airbag system not only possible but economically feasible. In addition, a MEMS based inertia measurement unit is suitable for small, light weight hip protector system, and can intelligently program to measure and recognize human motions to trigger the inflation of the airbag(s) before a subject falls to the ground.
Fig. 1 illustrates the basic concept of an intelligent hip protector system. A micro 3-D motion-sensor based belt mounted on the waist and is worn by a subject. The motion sensing system will be fully calibrated to compensate for temperature and environmental vibration effects. Two air bags, each with about 4.5” inch inflated diameter are connected by polypropylene tubes to a small compressed air cylinder of volume less than 10 mL, are embedded in the belt and are positioned on the greater trochanter of each hip. Based on our calculations, these airbags are expected to reduce the impact force during a fall by around 2000N.
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Figure 1. Conceptual illustration of the “smart Hip Protection” system in action.
When an elderly loses balance, the MEMS micro sensors in the belt will detect his/her disorientation and triggers the inflation of the air bag on the side in a few milli-seconds before falling to the ground.  The hip-airbags can be designed just like automobile airbags, which contain many micron-size holes for automatic deflation. Therefore, distension can be controlled to last for a few seconds, and the hip-airbags will gradually collapse afterwards. The force attenuation property of the inflated hip protector will be tested using the established method in our laboratory.  The motion-based condition of activating the inflation process will be defined such that it is sensitive enough to detect imbalance of an elderly but not too hypersensitive to induce false alarm. To test a falling down condition and generate a trigger signal by the µIMU is the key issue discussed in this paper.
Ⅲ   µIMU design

  MEMS sensors play a major role in the µIMU due to their low-cost and miniaturized size. We use MEMS sensors to measure the 3D accelerations and 3D angular rates, with the coordinate transformations and filtering calculations performed by Micro Control Unit (MCU).
A. System Description

The entire µIMU includes mainly two parts: the MEMS sensors and the MCU. We used three gyroscope sensors (single-axis) and two accelerometers (dual-axes) to detect human motion. The raw sensor signal is expressed by analogue voltage of -2.5v to +2.5v each. The MCU first converts the signals to digital signals, then transmits the packed data signal sequentially via a USB chip and wire to computer. After hundreds of experiments, which include lateral 
[image: image2]falling down, walking, running, sitting and stepping stairs, we formed a database for Support Vector Machine (SVM) training. After training, we selected the best features as SVM filter for falling motion recognition. Then the filter program was loaded into the MCU to perform such a function in real time. As Fig. 2 shows, it first transforms the analogue signals into digital signals, then do DFT transform for filter, finally compares the data with SVM filter, give a judge if the motion is a falling down state, if it is dangerous, then generate -1 as a trigger for airbag action. 

[image: image3]
Figure 3.  Photograph of a 3-D motion system consisting of 3 gyros and 3 acceleration sensors and a micro processor.

B  Hardware
An illustration of components of µIMU is shown below in Fig. 3. Three single-axis MEMS gyroscope sensors (ADXRS150 Analog Devices Inc.) are mounted as shown, each can test one angular rate in one direction, thus we can measure yaw, roll and pitch of the motion. Also, two dual-axis MEMS accelerometers (ADXL311 Analog Devices Inc.) are mounted as below, one of them is at the back side of the µIMU horizontally to measure accelerations in the x and y directions. The other is placed at the side vertically to detect accelerations in y and z directions. Therefore, the two sensors can detect the motion of an object in three dimensions. 
The original analog signal generated by the sensors is transmitted directly to the ADC channels of MCU (AT Mega 8535L), as show in the figure, after A/D transform, the digital signal is passed to USB chip through TXD port for late transmission to PC for off-line analysis.

The MCU supports In-System-Programming to update software. After experiments and Support Vector Machine (SVM) training with the database, we download new program for motion recording and falling down recognition. After that, a micro battery cell should be added in for power supply, MEMS sensors and MCU is of low energy consumption, which ensures that our µIMU can work independently for a long time.  
C  Software

The software for µIMU mainly includes 3 parts. The first part is ASM programming for MCU, which transform the original analogue into digital signal and transmit data package to computer via USB module. We describe our digital signal like this. For each angular rate and acceleration, the minimum value is 0 and the maximum value is 255, that is, 128 is the zero point of angular rates and accelerations. F(x) = (x-128) × K. For acceleration, K is equal to K=1.63m/s. For angular rate, K=1.172 degree/s (calculated by datasheets). Then we can calculate 3D accelerations and 3D angular rates out.
  The second part is the data recording and analysis, as Fig. 4 shows, the computer received all accelerations and angular rates and display in six diagrams in time domain, each represents one axis acceleration and rotation, at the same time, a txt file is generated consisting of six characters for DFT filtering and analysis. 

[image: image4]
Figure 4.  Time domain accelerations and rotations in 3 dimensional.

The third step is the program integrated with the SVM training features, which on one hand, will still transform analogue signals into digital ones, on the other hand, the features is act a function of filter, it will judge the information transformed from sensors, if the motion is a falling down state. If it is a dangerous state, the MCU will send out a signal of 1, indicates that the body is falling down, then the signal will trigger the airbag for inflation.
Ⅳ   SVM Training for Falling Down Recognition
Our goal is to recognize Falling-down motion in real-time in order to control the hip-protecting airbag. We address this classification problem as binary pattern recognition with Support Vector Machines (SVM). 
(1) Set up motion database of ‘Falling-down’ and ‘non-Falling-down’ by experiments wearing the uIMU; 
(2) Use Supervised PCA (Principle Component Analysis) to generate and select characteristic features; 
(3) SVM training (Support Vector Machine) and finally get the SVM filter.
A. Supervised PCA for Feature Selection

Feature generation and selection are very important in Falling-down Recognition, as badly selected features such as weightlessness, learning backward, hip spinning may cause confusion with jumping, sitting and turning around so this can obviously diminish the performance. Furthermore, even though the present features contain enough information about the output class, they may not predict the output correctly because the dimen​sion of feature space may be so large that it requires numerous instances to determine the result.     

Principle Component Analysis (PCA) can generate mutu​ally uncorrelated features while packing most of the information in several eigenvectors. It is widely inves​tigated in pattern recognition and in a number of sig​nal and image processing applications. So in our system, we use Supervised PCA algorithms for feature generation and selection.

A set of eigenvectors can be computed from the training motion data and some of eigenvectors are selected for classification according to the corresponding eigenvalue. We consider that every feature encodes different information in a certain scale such as moving backward, weightlessness, moving down etc. 

We selected the eigenvectors according to the binary classified capability, instead of the corresponding eigenval​ues. It is because the eigenvectors with large eigenval​ues may carry the common features, but not the dis​tinguishing information between the two classes. 

The method can be described in brief as follows. Suppose that we have two sets of training samples: A and B. The number of training samples in each set is N. Φi represents each eigenvector produced by PCA. Each of the training samples, including positive samples and negative samples, can be projected into an axis ex​tended by the corresponding eigenvector. By analyz​ing the distribution of the projected 2N points, we can roughly select the eigenvectors which have more motion information. The following is a detailed description of the process. 

(1) For a certain eigenvector Φi, compute its map​ping result according to the two sets of train​ing samples. The result can be described as λi,j, (1≤i≤M, 1≤j≤2N);    

(2) Train a classifier fi using a simple method such as Perception or Neural Network which can separate λi,j into two groups: falling-down and non-falling-down with a minimum error E(fi); 

(3) If, E(fi)<θ then we delete this eigenvector from the original set of eigenvectors. 

M is the number of eigenvectors and 2N is the to​tal number of training samples. θ is the defined threshold. The left few eigenvectors are selected. The eigenvectors can also represented back to motion data representing a typical movement.

[image: image5]
Figure 5. Different distinguishing ability of different eigenvector.

The key point is shown in Fig. 5 for evaluation of eigenvectors. The performance of Eigenvector 
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It is possible that we select too few good eigenvec​tors, even none in a single PCA analysis process. We propose the following approach to solve this problem. We assume that the number of training samples, 2N is large enough. We randomly select training samples from the two sets. The number of selected training samples in each set is less than N/2. Then, we perform the Supervised PCA analysis with them. By repeat​ing the previous process, we can collect a number of good features. This approach is inspired by the boot​strap method. The main idea of this approach is that it may emphasize some good features by reassembling data and then make the features stand out easily.  

B  SVM Classifiers

The Support Vector Machines is a new technique in the field of statistical learning theory [9]. Originally, Support Vector Machine (SVM) was developed from classification problems. It was then, extended to re​gression estimation problems, i.e., to problems related to finding the function: 
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In SVM, the basic idea is to map the data X into a high-dimensional feature space f via a nonlinear map​ping Φ, and to do linear regression in this space [10].                                 
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where b is a threshold. Thus, linear regression in a high dimensional (feature) space corresponds to non​linear regression in the low 
dimensional input space RN. Note that the dot product in Equation (1) be​tween 
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 would have to be computed in this high dimensional space (which is usually intractable), if we are not able to use the kernel that eventually leaves us with dot products that can be implicitly ex​pressed in the low dimensional input space RN . Since Φ is fixed, we determineωfrom the data by minimiz​ing the sum of the empirical risk 
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where 
[image: image19.wmf]l

 denotes the sample size
[image: image20.wmf])

,

,

(

1

l

x

x

K

, C(.) is a loss function and 
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 is a regularization constant. For a large set of loss function, Equation (2) can be min​imized by solving a quadratic programming problem, which is uniquely solvable [11]. It can be shown that the vector 
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with αi, α*i being the solution of the aforementioned quadratic programming problem [10]. αi and α*i have an intuitive interpretation as forces pushing and pulling the estimate 
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 towards the measurements yi [12]. Taking Equation (3) and Equation (1) into account, we are able to rewrite the whole problem in terms of dot products in the low dimensional input space 
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Where αi, α*i are Lagrangian multipliers, and 
[image: image27.wmf]i

x

 are support vectors. 

In Equation (4), we introduce a kernel function
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. As explained in [13], any symmetric kernel function K satisfying Mercer’s con​dition corresponds to a dot product in some feature space. 

For a detailed reference on the theory and compu​tation of SVM, readers can refer to [12]. 

There are many kernels that satisfy the Mercer’s condition as described in [12]. In this paper, we take a simple polynomial kernel in Equation (4): 
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where d is user defined (Taken from [10]). 

After the off-line training process, we obtain the values for Lagrangian multipliers and support vectors of SVM. Let 
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where i1, i2, …, iN are nonnegative integers, and 
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Ⅴ   Experiments and Analysis

Experiments were performed to demonstrate the motion detection in 3D space of our µIMU. We first performed experiments of lateral falling down and other motions to form the database. After SVM training, we extracted the best features for recognition of a falling down state, the recognition rate can be as high as 90%. 
A. Motion detection experiments and database forming

Tow groups of experiments were done. One hundred times of lateral falling down and one hundred times of other motions, including 10 times running, 20 times walking, 20 times sitting, 20 times squat, 20 times stepping stairs and 10 times jumping. The reason for selecting these motions is that they are the normal motions of life. For the elderly, they seldom jump and run, hence we collected more sitting and squatting motion data, in addition to the fact that these motions are more similar to the motion during a fall.
Time-sequenced pictures at an experimental subject during a fall are shown in Fig.6. And Fig. 7 follows with the original data of motion including 3D accelerations and rotations. According to GY in Fig. 8 (blue color) is angular rate of the pitch direction, hence we can judge a falling motion starting from the changing of GY. AZ (yellow color) is the acceleration in vertical direction. When it suddenly jumps up, it means 
[image: image42]
[image: image43]the hip hits on the ground. We cut the initial state from the GY stating with a end when AZ is starting to jump. Fig. 8 shows that the AZ is at the lowest value, it means the hip just hitting on the mat. Fig. 9 is the DFT transform result, which records information of frequency domain. One hundred falling down experiments were done including fast falling down and the experiments are also done by two different people for completion of the database. These experiments are for falling down reference.
Fig. 10, 11 and 12 show the state of running, we cut one period of one foot for analysis and DFT transform, these other motion data are listed in other group.
B. SVM training and falling down recognition

We recorded 200 experiment results with half of ‘falling-down’ and the other half of ‘non-falling-down’. Each result consisted of 6 arrays measured by the 6 sensors respectively. Every result has different array length because the motion periods are different.


[image: image44]
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[image: image46]
We performed data pre-processing to filter noise and reduce dimension. For each experiment result, we performed DFT (Discrete Fourier Transform) with the 6 arrays respectively. We kept the first 10 order of each DFT result. After 200 times DFT, we obtained a matrix of 200 rows and 60 columns. Each row represents one experiment. Each has 6 multiply 10 numbers by the sequence of Gx, Gy, Gz, Ax, Ay, Az.
Then we selected the good vectors as training features. After 213 Supervised PCA, we obtained 175 good eigenvectors. But the feature information by one eigenvector may not be sufficient enough. Thus we randomly selected out three eigenvectors from the 175 eigenvectors and performed the Supervised PCA. After 3152 times of selection, we obtained 87 good triple sets. After testaments, we found our measuring & training system and the experiments are very good. All the top 9 eigenvector sets can classify the 200 vectors into ‘falling-down’ and ‘non-falling-down’ with 100% correct.

[image: image47]

[image: image48]
Table 1.  The coefficient of SVM classifier
	c0
	-2.084349241
	c5
	0.00000498

	c1
	0.007279936
	c6
	-0.000000173

	c2
	-0.003962637
	c7
	0.000000374

	c3
	-0.002182333
	c8
	-0.000001469

	c4
	-0.000003207
	c9
	0.000002342


Then we randomly choose the No. 80 triple set for SVM training and get the coefficients of SVM filter (as shown in table 1). 
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The test result shows, this SVM classifier can categorize these 200 experiment results with 100% correct. And because the filter is in the form of Algorithm operation, the calculation time is very short.
VI Conclusion
 This paper presents a novel MEMS based Micro Initial Measurement Unit (µIMU) for detection of complex human motions and recognition of falling-down motion. The µIMU will eventually be used as the sensing and trigger part of a human air-bag for a hip-protector system. The µIMU can now measure human motion data of accelerations and rotations in 3 dimensions. With an integrated microcontroller, the small size unit can transmit experimental data to a computer for real time or post-experiment data analysis. We also used SVM as a pattern recognition method for training after PCA for the DFT data. With the training out features, the correctness rate of falling down recognition can be greater than 90%.
In the future, we should record more experiment data of motion, for SVM training and try to find the best features for a real-time recognition of falling-down motion.
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Figure 10.  Original motion data recording of forward running








Figure 9.  DFT transform result V.S. frequency of falling





Figure 8.  Pure falling down state cutting.








Figure 12.  DFT transform result V.S. frequency of running





Figure 11.  One period running state cutting.





Figure 7.  Original motion data recording of falling down








Figure 6.  Lateral falling down state.





Figure 2. Schematic chart of µIMU
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